A Bayesian Model of Multilingual Unsupervised Semantic Role Induction
نویسندگان
چکیده
We propose a Bayesian model of unsupervised semantic role induction in multiple languages, and use it to explore the usefulness of parallel corpora for this task. Our joint Bayesian model consists of individual models for each language plus additional latent variables that capture alignments between roles across languages. Because it is a generative Bayesian model, we can do evaluations in a variety of scenarios just by varying the inference procedure, without changing the model, thereby comparing the scenarios directly. We compare using only monolingual data, using a parallel corpus, using a parallel corpus with annotations in the other language, and using small amounts of annotation in the target language. We find that the biggest impact of adding a parallel corpus to training is actually the increase in mono-lingual data, with the alignments to another language resulting in small improvements, even with labeled data for the other language.
منابع مشابه
Unsupervised frame based Semantic Role Induction: application to French and English
This paper introduces a novel unsupervised approach to semantic role induction that uses a generative Bayesian model. To the best of our knowledge, it is the first model that jointly clusters syntactic verbs arguments into semantic roles, and also creates verbs classes according to the syntactic frames accepted by the verbs. The model is evaluated on French and English, outperforming, in both c...
متن کاملCrosslingual Induction of Semantic Roles
We argue that multilingual parallel data provides a valuable source of indirect supervision for induction of shallow semantic representations. Specifically, we consider unsupervised induction of semantic roles from sentences annotated with automatically-predicted syntactic dependency representations and use a stateof-the-art generative Bayesian non-parametric model. At inference time, instead o...
متن کاملUnsupervised Induction of Frame-Semantic Representations
The frame-semantic parsing task is challenging for supervised techniques, even for those few languages where relatively large amounts of labeled data are available. In this preliminary work, we consider unsupervised induction of frame-semantic representations. An existing state-of-the-art Bayesian model for PropBank-style unsupervised semantic role induction (Titov and Klementiev, 2012) is exte...
متن کاملSemi-Supervised Semantic Role Labeling: Approaching from an Unsupervised Perspective
Reducing the reliance of semantic role labeling (SRL) methods on human-annotated data has become an active area of research. However, the prior work has largely focused on either (1) looking into ways to improve supervised SRL systems by producing surrogate annotated data and reducing sparsity of lexical features or (2) considering completely unsupervised semantic role induction settings. In th...
متن کاملA Bayesian Approach to Unsupervised Semantic Role Induction
We introduce two Bayesian models for unsupervised semantic role labeling (SRL) task. The models treat SRL as clustering of syntactic signatures of arguments with clusters corresponding to semantic roles. The first model induces these clusterings independently for each predicate, exploiting the Chinese Restaurant Process (CRP) as a prior. In a more refined hierarchical model, we inject the intui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.01514 شماره
صفحات -
تاریخ انتشار 2016